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markery, jako vyšší věk nebo stupeň levoko-

morové dysfunkce, předurčují celkovou mor-

talitu, ale mají nízkou specificitu pro určení

způsobu úmrtí [2]. Tato fakta jsou důvodem,

že již mnoho let se hledají další markery, které

by dokázaly s vyšší specificitou vytipovat ne-

mocné ohrožené náhlou smrtí v důsledku elek-

trické nestability vedoucí ke vzniku maligní

komorové arytmie. K vyšetření srdeční stabi-

lity se užívá řada metod, které mají různou

specificitu i senzitivitu. Vzhledem k tomu, že

specificita i senzitivita každé metody je ještě

rozdílná u různých srdečních onemocnění,

výběr vyšetřovacích metod či kombinace

těchto metod závisí na vyšetřujícím, který

musí zvážit veškeré klinické okolnosti každého

jednotlivého pacienta. K nejčastěji používa-

ným metodám vyšetření srdeční stability patří

dlouhodobá monitorace elektrokardiogramu

(EKG, Holterovo monitorování), vyšetření

pozdních potenciálů, vyšetření variability

srdečního rytmu, turbulence srdečního rytmu,

senzitivity baroreflexu, alternace vlny T, délky

intervalu QT, variability intervalu QT, dis-

perze intervalu QT a invazivní elektrofyziolo-

gické vyšetření.

Dlouhodobá monitorace EKG
Dlouhodobá monitorace EKG (nejčastěji mo-

nitorace po dobu 24 hodin) patří k základním

vyšetřovacím metodám, které přímo odhalují

projevy elektrické nestability. Kontinuální

sledování EKG v průběhu 24 hodin může za-

chytit epizody komorové i síňové ektopické

aktivity s kvantitativním i kvalitativním hod-

nocením těchto abnormalit. Frekventní

a komplexní formy komorové ektopie předsta-

vují nezávislý rizikový faktor NSS, jejíž prav-

děpodobnost zvyšují 2–3krát u nemocných po

infarktu myokardu (IM) [4,5]. Současně s dal-

šími klinickými parametry vedla dlouhodobá

monitorace EKG k vyhledávání nemocných

po IM, kteří jsou na základě přítomnosti ne-

setrvalých komorových tachykardií (NSKT)

indikováni k implantaci trvalého defibrilátoru

(ICD) pro vysoké riziko NSS [6,7]. Dlouho-

dobá monitorace EKG se také používá ke sta-

novení efektu antiarytmické léčby (ovlivnění

elektrické nestability). Zvláštní důležitost plní

dlouhodobá monitorace EKG v případě ne-

mocných s paroxyzmy fibrilace síní (FIS),

u níž se ukázalo, že asymptomatické FIS se

objevují častěji než symptomatické FIS, což je

důležité při rozhodování o trvalé antikoagu-

lační léčbě. Četnost paroxyzmů FIS spouště-

ných předčasnými síňovými stahy v korelaci

se symptomatologií stratifikuje nemocné,

kteří jsou přednostně indikováni k radiofrek-

venční izolaci plicních žil. Dlouhodobá moni-

torace EKG byla postupně rozšířena o mož-

nost současného hodnocení segmentu ST, va-

riability srdečního rytmu, pozdních potenciá-

lů, intervalu QT a alternace vlny T (T-wave

alternans – TWA), což jsou parametry, které

mohou přispět ke stratifikaci rizika NSS

u různých populací nemocných (viz níže).

Úvod
Rozsáhlými výzkumy bylo zjištěno, že inci-

dence náhlé srdeční smrti (NSS) se nezávisle

zvyšuje s přítomností strukturálního srdeč-

ního onemocnění, se stupněm levokomorové

dysfunkce a s věkem [1]. Poměr náhlých úmrtí

k celkové mortalitě se i přes vývoj léčebných

metod u nemocných se srdeční slabostí v po-

sledních 50 letech prakticky nezměnil [2].

Nedávno uskutečněné studie ukazují, že až

50 % úmrtí u nemocných s levokomorovou dys-

funkcí způsobenou ischemií jsou úmrtí náhlá

nebo arytmická [3]. Pokusy o určení, kteří pa-

cienti se srdeční slabostí (SS) jsou ve vyšším

riziku NSS, přinesly jen omezené výsledky

a do dneška není jasné, kteří nemocní zemřou

arytmicky a kteří na progresi SS. Jednoduché
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Pozdní potenciály
Konstrukcí EKG-přístrojů s vysokou rozlišo-

vací schopností byly vytvořeny záznamy

EKG-signálů, které nejsou patrné pouhým

okem ze standardního EKG-záznamu. Jde ve-

směs o počítačové zpracování zprůměrova-

ného zesíleného EKG-signálu (signal averaged

ECG – SAECG) při současné redukci artefi-

ciálních šumů. Tato metoda se maximálně

soustředila na analýzu drobných potenciálů

na konci komplexu QRS, které označujeme

jako pozdní potenciály (PP). Na tuto metodu

je několik technických i klinických pohledů

[8–12]. Musí být splněny některé podmínky,

jako např. nezbytnost přirozeného opakování

signálů, vyloučení nahodilého šumu a nezá-

vislost sledovaného signálu k interferujícímu

šumu. Existují především 3 zdroje rušivých

šumů – šum z elektronických přístrojů, šum

z běžného zdroje elektrického proudu a šum

pocházející ze svalů hrudní stěny. Principem

této metody je, že EKG-signál je nejdříve di-

gitalizován pomocí analogového konvertoru

a následně jsou signály zfiltrovány a zprůmě-

rovány. Po tomto zpracování většina přístrojů

provede kvalitativní kontrolu a Fourierovu

spektrální analýzu.

PP jsou produkovány periinfarktovou svalo-

vou částí myokardu, v níž došlo ke zpoždění

signálu v tzv. zóně pomalého vedení v oblasti

přechodu nekrotického a viabilního myokar-

du. Je třeba si uvědomit, že nemocní po spod-

ním IM mohou mít častěji přítomny PP než

nemocní po předním IM z toho důvodu, že

spodní stěna je fyziologicky depolarizována

i repolarizována později než přední stěna,

a proto PP z přední stěny nemusí přesahovat

normální trvání komplexu QRS z důvodu

předčasnější aktivace. Podobně je tomu

i u nemocných s raménkovou blokádou, u níž

může opožděná aktivace v důsledku vodivé

poruchy maskovat PP z periinfarktové oblasti

– toto jsou de facto limitace tohoto vyšetření.

Jsou 3 parametry, kterými se nejčastěji hod-

notí přítomnost PP:

1. Celkové trvání komplexu QRS (QRSc), což

představuje celkové trvání komplexu QRS,

včetně PP.

2. Efektivní hodnota voltáže posledních

40 ms (RMS40) z QRSc, která představuje

relativní amplitudu komponenty PP.

3. Nízkoamplitudové signály (low amplitude

signals – LAS), což jsou signály na konci

komplexu QRS, jejichž iniciální hodnota je

menší než 40 μV.

Jako patologické se tyto parametry hodnotí,

pokud celková délka trvání komplexu QRS je

více než 114 ms, voltáž v posledních 40 ms

(RMS40) je nižší než 20 μV a pokud trvání

LAS je větší než 38 ms (graf 1) [11].

snížení jak mortality, tak i výskytu komoro-

vých arytmií, což však bylo způsobeno větším

počtem faktorů. Navzdory těmto léčebným

změnám nedošlo při vyšetřování PP ke změně

specificity i senzitivity metody. Navíc studie

ukázaly, že parametr QRSc pro určení rizika

komorové arytmie je podstatně přesnější

a přitom nezávislý parametr proti RMS40

a LAS. Pozitivní prediktivní hodnota zůstala

kolem 20 % a negativní prediktivní hodnota

kolem 97 % [11,17,18]. Zásadní je, že na zá-

kladě takto nízké pozitivní prediktivní hod-

noty PP nelze samostatně tohoto parametru

použít v rozhodování pro další klinické řešení

u nemocných po IM, ani u nemocných s jinou

kardiomyopatií.

Variabilita srdečního rytmu
Variabilita srdečního rytmu (heart rate variabi-

lity – HRV) může být hodnocena 2 způsoby:

1. Výpočtem z ukazatelů založených na statis-

tických operacích s RR-intervaly: jedná se

o geometrickou metodu analýzy posloup-

nosti RR-intervalů v čase (time domain ana-

lysis) [19].

2. Spektrální analýzou řady RR-intervalů

(frequency domain analysis) [20].

Obě metody vyžadují přesné časování kmitů R.

Analýzy mohou být provedeny v krátkých

úsecích EKG (trvání od 5 minut do 30 minut)

nebo z 24 hodinového záznamu.

Geometrická metoda
statistických operací (time domain)
Tato analýza rozlišuje 2 typy ukazatelů HRV.

Variabilita dvou sousedních RR-intervalů,

Metody zprůměrňovaného a zesíleného signá-

lu, tak jak se používají k detekci PP, jsou také

aplikovány k rozboru vln P. Zatímco v případě

komorových arytmií jsou PP reálnou kompo-

nentou komplexu QRS, u síňových arytmií,

kde jde především o fibrilace síní, nebývá pa-

ralela PP na konci vlny P detekována. Přesto

se předpokládá, že podrobným rozborem si-

nusové vlny P by se mělo podařit identifikovat

nemocné s vysokým rizikem recidiv paro-

xysmů fibrilace síní [13,14]. Podrobný rozbor

morfologie vlny P s přesným určením jejího

začátku a konce je z běžného povrchového

EKG velmi obtížný, ale metoda zprůměrňova-

ného a zesíleného EKG-signálu může odhalit

přítomnost či nepřítomnost pouhým okem ne-

postřehnutelných vln o nízké amplitudě. Tyto

vlny o nízké amplitudě prodlužují celkové tr-

vání vlny P a právě celková délka vlny P při

tomto filtrovaném a zesíleném signálu má zá-

sadní význam. Přestože se stále objevují nové

studie, které sledují celkovou délku vlny P,

není zatím shoda v tom, jak velké prodloužení

vlny P by signifikantně identifikovalo nemocné

s vysokým rizikem recidiv fibrilace síní

[15,16].

Klinický význam
Studie, které se zabývaly stratifikací rizika

NSS či rizikem výskytu maligních komoro-

vých arytmií na podkladě kombinovaných pa-

rametrů, ukázaly, že přítomnost PP je nezá-

vislý rizikový faktor, který není závislý na

stupni ektopie (spouštěč) ani na stupni dys-

funkce levé komory (LK). V 90. letech však

došlo ke změně ve strategii léčby akutního IM

– nastala trombolytická éra a následně éra di-

rektních angioplastik. Tyto metody vedly ke
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Graf 1. Pozdní potenciály. Celkové trvání komplexu QRS (QRSc) – potenciály začínají od
67. ms a končí ve 205. ms, celková doba je tedy 138 ms. RMS – relativní amplituda (efektivní
hodnota) voltáže pozdních potenciálů v posledních 40 ms, od 165. ms do 205. ms (RMS40),
činí 20 μV. LAS – délka trvání nízkoamplitudových signálů na konci komplexu QRS s iniciální
hodnotou 40 μV je od 151. ms do 205. ms, což činí 54 ms; upraveno dle [110].
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nebo krátkodobá srdeční variabilita, předsta-

vuje rychlé změny srdečního rytmu. Dlouho-

dobá variabilita představuje pomalejší změny

srdečního rytmu (méně než 6 min–1). Oba typy

těchto ukazatelů jsou vypočítávány z RR-in-

tervalů umístěných ve vybraném časovém

okně (obvykle 5 minut). Příkladem jednodu-

chého ukazatele krátkodobé HRV je standardní

odchylka rozdílů jednotlivých sousedících

RR-intervalů ve vybraném časovém okně. Pří-

kladem ukazatele dlouhodobé HRV je stan-

dardní odchylka všech RR-intervalů nebo roz-

díl mezi maximální a minimální délkou RR-in-

tervalu ve vybraném časovém okně. Při vý-

počtech ukazatelů HRV respirační sinusová

arytmie ovlivňuje výsledek krátkodobé HRV,

baroreflex a termoregulace ovlivňují výsledek

dlouhodobé HRV. Tyto metody standardních

odchylek se užívají k výpočtu HRV při 24ho-

dinových záznamech EKG [21–23].

Spektrální analýza řady R–R intervalů
(frequency domain analysis)
Hlavní výhodou spektrální analýzy signálů je

možnost zkoumání frekvenčně specifických

oscilací RR-intervalů [24–26], proto ji prefe-

ruje proti původní metodě stále větší počet

vyšetřujících. Nejde tedy jen o „množství“ va-

riability, ale lze získat i údaje o oscilaci frek-

vence (počet fluktuací srdečního rytmu za

sekundu). Spektrální analýza zahrnuje rozlo-

žení sérií posloupných RR-intervalů do mno-

žiny sinusoidálních funkcí rozdílných ampli-

tud a frekvencí pomocí algoritmu Fourierovy

transformace. Výsledek může být zobrazen

velikostí variability jako funkce frekvence [27].

Analýza tedy zobrazuje amplitudu fluktuací

srdečního rytmu přítomných při různých

oscilačních frekvencích. Spektrální analýza

se může provádět na krátce trvajícím záznamu

srdečního rytmu s délkou několika minut.

Skupina následných RR-intervalů nesmí ob-

sahovat artefakty, a pokud je provedení Fou-

rierovy transformace provedeno na časově li-

mitovaných signálech, pak musí být signály

stabilní a periodické [24].

Spektrální analýza krátkodobých záznamů

(nejméně 2 minuty) rozlišuje 3 hlavní kompo-

nenty. Je to komponenta o velmi nízké frek-

venci (VLF < 0,04 Hz), nízké frekvenci (LF =

0,04–0,15 Hz) a vysoké frekvenci (HF = 0,15

až 0,4 Hz). VLF-komponenta má díky svému

nekoherentnímu chování doposud nejasný až

pochybný význam. Distribuce LF- a HF-kom-

ponent se mění v souvislosti s modulací auto-

nomního nervového systému a reprezentuje

chování obou větví tohoto systému – sympa-

tické i parasympatické. HF-komponenta od-

ráží především vagovou modulaci srdečního

rytmu, LF-komponenta pak především sym-

patickou, ale částečně také vagovou modulaci

srdečního rytmu. Výsledky těchto komponent

se většinou uvádějí v absolutních hodnotách

(ms2), někdy jsou však uváděny v normalizo-

vaných jednotkách, které představují poměr

těchto komponent k celkové hodnotě spektra

po odečtení VLF-komponenty. Tyto normali-

zované jednotky by měly zvýraznit vliv obou

větví autonomního nervového sytému na mo-

dulaci srdeční frekvence.

Spektrální analýza může být použita i u dlou-

hodobých záznamů k analýze sekvencí RR-in-

tervalů během 24hodinové monitorace. Vý-

sledky v těchto případech obsahují navíc

i komponenty o ultranízké frekvenci (ULF

< 0,0033 Hz). U dlouhodobého záznamu není

možno udržet stabilní modulaci nervového

systému, proto také výsledky jsou obtížně in-

terpretovatelné, a nelze tedy tuto metodu

v dlouhodobém záznamu upřednostňovat.

Výběr optimálního
způsobu analýzy HRV
Stále je cítit potřeba standardizace měření

HRV, neboť u mnoha doposud provedených

studií nelze tyto srovnat, jelikož byly prove-

deny za rozdílných podmínek i rozdílným

způsobem měření. Při výběru způsobu měření

HRV by měla být především brána v úvahu

plánovaná délka záznamu EKG a podmínky,

za kterých má být záznam získán. Počet mě-

řených hodnot pomocí geometrických metod

(time domain analysis) narůstá s délkou zázna-

mu a fyziologická platnost LF- a HF-kompo-

nent závisí na stabilitě autonomních modula-

cí. Proto musí být oba způsoby měření pečlivě

rozlišovány. Ke studii fyziologických detailů

autonomního stavu srdce nejlépe slouží spek-

trální analýza krátkého záznamu (nejlépe

5minutového), provedeného za stabilních pod-

mínek, což jsou podmínky, během nichž fy-

ziologické procesy regulující srdeční rytmus

jsou ve stabilizovaném stavu. Na druhé straně,

optimální hodnocení odpovědi kardiální auto-

nomie na okolní prostředí je založeno na

dlouhodobém 24hodinovém záznamu, který

obsahuje nejméně 18 hodin hodnotitelného

záznamu, zahrnujícího reprezentativní část

denního i nočního EKG. Tyto dlouhodobé zá-

znamy by měly být preferenčně hodnoceny

geometrickou metodou (time domain), i když

sekvence RR-intervalů mohou být hodnoceny

z dlouhodobého záznamu i metodou spektrální

analýzy (frequency domain), přitom se před-

pokládá stabilita regulačních mechanizmů bě-

hem této sekvence. Z uvedeného vyplývá, že

není vhodné srovnávat komponenty HRV zí-

skané z krátkodobého záznamu pomocí spek-

trální analýzy v rozdílných podmínkách, jako

je leh a stoj (noc a den), podobně jako není

vhodné srovnávat výsledky HRV z dlouhodo-

bého záznamu u skupiny hospitalizovaných

proti skupině plně ambulantní.

Klinický význam
Snížená HRV ukazuje ztrátu nebo snížení fy-

ziologické periodické fluktuace sinusového

rytmu, což může být způsobeno mnoha roz-

dílnými vlivy a nutně nemusí představovat

pouze změnu v autonomní modulaci. Hodno-

cení HRV má praktický význam nejen pro

hodnocení kardiovaskulárního rizika, ale také

pro časnou diagnostiku neuropatie, která je

často přítomna především u diabetiků. HRV

je snížená po IM a reflektuje zvýšený tonus

sympatické aktivity, který ovlivňuje srdeční

rytmus. Převaha sympatické aktivity zvyšuje

elektrickou nestabilitu srdce [28]. Rozsáhlé

studie potvrdily, že snížená HRV z 24hodino-

vého záznamu je silným prediktorem rizika

smrti u nemocných po prodělaném IM [29–31],

a to nezávisle na demografických vlivech,

funkční klasifikaci, ejekční frakci (EF) LK

a komorové ektopii [32]. Dokonce se ukázalo,

že u nemocných po infarktu myokardu je lep-

ším prediktorem NSS a výskytu maligní aryt-

mie, než je tomu u snížené EF LK, oba para-

metry se pak zdají být srovnatelné v predikci

celkové mortality. Prediktivní přesnost sní-

žené HRV je jen mírná, ale v kombinaci s os-

tatními rizikovými prediktory se stává účinným

parametrem stratifikace vysoce rizikových ne-

mocných po IM [33]. Navíc kombinace s růz-

nými rizikovými prediktory se zdá být schopna

odlišit od sebe nemocné náchylné k smrti

z důvodu arytmické události a nearytmické

události [34]. Snížená EF LK ukazuje na ná-

chylnost k SS a pravděpodobně odhaluje ne-

mocné v riziku smrti, nikoli však náhlé. Na

druhé straně snížená HRV ukazuje na selhá-

vání autonomní ochrany proti komorovým

arytmiím, a proto spíše identifikuje nemocné

ve vysokém riziku náhlé smrti nebo výskytu

komorových maligních arytmií.

Turbulence srdečního rytmu
Při hledání dalších přesnějších prediktorů

náhlé srdeční smrti u vysoce rizikových ne-

mocných byla zavedena vyšetřovací metoda

turbulence srdečního rytmu (heart rate turbu-

lence – HRT). HRT je modulace jednotlivých

RR-intervalů po komorovém ektopickém stahu

[35]. U zdravých jedinců s normální funkcí

srdeční autonomie je každý komorový před-

časný stah (komorová extrasystola – KES) pro-

vázen náhlým zkrácením RR-intervalu v ná-

sledujících 2–4 cyklech a poté dochází k po-

zvolnému prodlužování RR-intervalů v násle-

dujících 5–20 cyklech (graf 2). Počáteční zkrá-

cení je charakterizováno tzv. počátkem turbu-

lence („turbulence onset“), který je dán vzta-

hem prvních dvou RR-intervalů po KES k po-

sledním dvěma RR-intervalům před KES. Po-

zitivní hodnota znamená zpomalení sinusové-

ho rytmu po KES a negativní hodnota zname-

ná zrychlení sinusové frekvence po KES. Hod-

noty jsou vyjadřovány v %. Postupnému ná-

slednému zpomalování srdečního rytmu říká-

me strmost turbulence („turbulence slope“).

Tato veličina je definována jako největší str-

most (největší zpomalení) cyklu 5 RR-inter-

valů v průběhu 20 RR-cyklů následujícího si-
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nusového rytmu po KES. Hodnoty jsou vyjád-

řeny v ms/RR-interval. Hodnoty počátku tur-

bulence ≥ 0 a strmosti turbulence ≤ 2,5 ms/RR-

-interval znamenají nepřítomnost turbulence,

zatímco hodnoty počátku < 0 a strmosti

> 2,5 ms/RR-interval znamenají přítomnost

turbulence srdečního rytmu. Při zkřížených

hodnotách počátku a strmosti (onset ≥ 0

a slope ≤ 2,5 ms/RR-interval) je v predikci

výrazně důležitější hodnota strmosti, jejíž

nízká hodnota patrně odráží ztrátu antiaryt-

mické ochrany (graf 3).

Klinický význam
Nepřítomnost HRT znamená u nemocných po

IM vysoké riziko náhlé smrti či komorové

arytmie a tento faktor se zdá být nezávislý na

ostatních rizikových faktorech. HRV hodno-

cená z dlouhodobého záznamu nejspíše od-

ráží autonomní odpověď na zevní prostředí

a zevní stimuly, které aktivují řadu fyziologic-

kých reflexů. HRT se naopak jeví jako fenomén

spouštěný vnitřními stimuly, které aktivují

komplexnější mechanizmy. Tím se vysvětluje

možnost vyšší prediktivní hodnoty stratifikač-

ního rizika HRT proti HRV. Nicméně v prove-

dených studiích abnormální HRT predikovala

spíše celkovou mortalitu než arytmickou mor-

talitu [35] a u neischemické kardiomyopatie

HRT nepredikovala komorové arytmie [36].

Ke stanovení predikce stratifikačního rizika

bude třeba podobně jako u ostatních neinva-

zivních vyšetřovacích metod dalších studií za

předem stanovených podmínek, eventuálně

i ve spojení s ostatními stratifikačními pre-

diktory.

Senzitivita baroreflexu
Podstatou této metody je zvýšení krevního

tlaku, který spouští reflex baroreceptoru, který

zvýší tonus vagu, a toto zvýšení parasympa-

tického tonu vede ke zpomalení sinusového

rytmu. Poměr prodloužení délky cyklu sinuso-

vého rytmu (zpomalení frekvence) k velikosti

zvýšení systolického tlaku krve v mm Hg je

vyjádřením senzitivity baroreflexu (BRS). Sní-

žení této hodnoty odhaluje nemocné ohrožené

vznikem KT nebo FIK [37–39]. BRS lze hod-

notit během krátké periody, během níž dojde

k vyprovokování změny systémového krevního

tlaku pomocí aplikace vazopresorik (fenyl-

efrin) nebo vazodilatancií (nitroglycerin) nebo

neinvazivně Valsalvovým manévrem, krční

manžetou nebo masáží karotického sinu. Nej-

standardizovanější metoda hodnocení BRS je

po podání fenylefrinu intravenózně v dávce

2–10 μg kg–1 během 30 vteřin, přitom velikost

dávky se určuje závažností srdečního one-

mocnění [40,41]. BRS lze také graficky vyjá-

dřit strmostí návratné linie, která vyjadřuje

závislost RR-intervalu na hodnotách krevního

tlaku. Čím je tato linie strmější, tím větší je ba-

roreflexní modulace srdečního rytmu. Za nor-

mální se pokládají hodnoty 14,8–16 ms/m mHg.

Ve studii ATRAMI (Autonomic Tone and Re-

flexes After Myocardial Infarction) hodnota

BRS < 3 ms/mm Hg byla signifikantním rizi-

kovým faktorem zvýšené mortality u nemoc-

ných po IM [42]. V jiné studii hodnota BRS

> 3 ms/mm Hg ve spojení s nepřítomností

TWA (T-wave alternans – TWA) velmi dobře

predikovala nepřítomnost komorové arytmie

u nemocných s implantovaným defibriláto-

rem [43].

Klinický význam
Prediktivní přesnost snížené BRS je jen mírná,

ale v kombinaci s ostatními rizikovými pre-

diktory může být účinnějším prediktorem

stratifikace vysoce rizikových nemocných po

IM [42,44]. Ve srovnání s HRV je tato metoda

méně standardizovaná a ve studiích byly po-

užívány rozdílné způsoby vyšetření. Hlavní

problém těchto vyšetřovacích metod je špatná

reproducibilita a obtížné udržení standardních

podmínek (dechová aktivita) [38].

Alternace T vlny
– T wave alternans
Alternace T-vlny (T-wave alternans – TWA)

odráží fluktuaci vlny T v EKG-obraze stah od

stahu a je spojena s disperzí repolarizace

a s mechanizmy NSS. TWA je slibným EKG-

-ukazatelem rizika NSS, který měří stah od

stahu alternaci tvaru, amplitudy nebo časo-

vání vlny T. V současné době se užívá spíše

mikrovoltážní hodnocení alternace T-vlny

(MTWA), což jsou změny nepostřehnutelné

pouhým okem, ale hodnotitelné při počítačo-

vém zpracování EKG-signálů [45,46]. TWA

odráží prostorovou nebo časovou disperzi re-

polarizace a oba typy disperze mohou před-

cházet fibrilaci komor [47]. Doposud není jasné,

co je patofyziologickým podkladem MTWA,

a také není jasné, jaký je vztah MTWA k vi-

ditelné TWA předcházející komorové tachy-

kardii (KT) nebo fibrilaci komor (FIK), i když
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Graf 2. Příklad rozdílné turbulence srdečního rytmu. Na horním obrázku je zřetelné zkrácení
a prodloužení intervalů RR (zrychlení a zpomalení srdečního rytmu) po kompenzační pauze
po komorové extrasystole. Na spodním obrázku není patrna prakticky žádná změna v inter-
valech RR po komorové extrasystole – prakticky žádná turbulence; upraveno dle [35].
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v některých studiích se zdá, že jde o analogické

parametry [48,49].

Prostorová disperze
repolarizace a TWA
Prostorové rozdíly v repolarizaci měřené po-

mocí délky trvání akčních potenciálů (action

potentials duration – APD) nebo rychlostí ve-

dení mohou chránit depolarizaci myocytů,

které jsou ještě repolarizované z předchozího

cyklu [50,51]. Toto může být příčinou chování

alternace 2 : 1, přitom se může jednosměrný

blok objevit v místech opožděné depolariza-

ce, a tak usnadnit reentry mechanizmus. Fak-

tory, které mají proarytmogenní efekt (ische-

mie, komorové předčasné stahy), způsobují

repolarizační alternans zvýšením prostorových

gradientů v repolarizaci [48,52]. Za kritic-

kých okolností pak tyto faktory mohou obrá-

tit fázi buněčného alternans v určitém okrsku

tkáně, a mohou tím způsobit diskordantní

alternans, což vede k jednosměrnému bloku

a k možnému vzniku FIK [48,52,53].

Časová disperze repolarizace a TWA
TWA může být také důsledkem časové dis-

perze repolarizace. Alternace APD je usnad-

něna mechanizmem prudké restituce. Resti-

tuce APD vyjadřuje vztah mezi APD jednoho

stahu a diastolickým intervalem separujícím

vlastní náběh akčního potenciálu od předchá-

zejícího akčního potenciálu [54]. Jestliže re-

stituce APD je prudká, malá změna v diasto-

lickém intervalu při lehce předčasném stahu

způsobuje fluktuaci v APD, což usnadňuje

alternans [55]. Za určitých podmínek to může

vést k frakcionaci čelní vlny repolarizace

a vzniku FIK [47]. Podobně prudká restituce

rychlosti vedení odráží analogicky chování

vedení v závislosti na frekvenci a vliv několika

předcházejících diastolických intervalů rov-

něž přispívá k alternaci APD a k arytmiím.

Klinické měření TWA z EKG
Nejrozšířenější metodou pro měření TWA je

metoda spektrální analýzy kontrolované zvý-

šené srdeční frekvence [56], alternativní me-

todou je analýza ambulantní monitorace.

TWA se objevuje při zrychlené srdeční frek-

venci, přitom u nemocných se strukturálním

postižením srdce se TWA objevuje již v méně

zvýšených frekvencích než u normální popu-

lace [57]. Z těchto důvodů se TWA měří při

vyšší srdeční frekvenci, než je klidová srdeční

frekvence, ale ne při vysokých frekvencích,

které jsou zdrojem falešně pozitivních výsledků

TWA. Ke zvýšení srdeční frekvence, potřebné

pro měření TWA, se využívá buď zátěžového

testu, nebo kardiostimulace [58,59]. Dříve byl

upřednostňován zátěžový test [59], dnes se

častěji uplatňuje k vynucení vyšší srdeční

frekvence kardiostimulace, která snižuje ne-

určité výsledky a brání frekvenční fluktuaci,
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která může arteficiálně zvyšovat hodnoty

TWA [57,60]. Jedna z posledních prací také

hypoteticky ukázala, že TWA v době vyšší sr-

deční frekvence při ambulantní monitoraci

může odrážet diurnální prostředí [46]. Vše-

obecně se přijímá, že pro hodnocení TWA není

třeba vysazovat betablokátory, i když jejich

vliv na autonomní systém není jasný. Na jedné

straně betablokátory a sotalol zeslabují TWA

v důsledku antiarytmického působení a zlep-

šené systolické funkce, na druhé straně beta-

stimulace ne vždy zvyšuje TWA [61,62]. Pro-

kainamid, amiodaron a kalciové blokátory

rovněž snižují TWA s nejistým vlivem na dia-

gnostickou přesnost TWA [63–65]. Efekt di-

goxinu na TWA je nejasný.

Měření TWA pomocí spektrální analýzy
Spektrální analýza pracuje s TWA jako se sig-

nálem navýšeným na každou vlnu T [45,66].

Pokud bychom průběh po sobě jdoucích vln

T navrstvili na sebe, alternace vln T v jednot-

livých bodech uvnitř vlny T budou stah od

stahu oscilovat dolů nebo nahoru. Rychlá

Fournierova transformace provádí spektrální

sumaci všech bodů vlny T a jejich srovnáním

pak definuje velikost alternans a odlišuje tyto

oscilace od respiračních modulací a přídat-

ného spektrálního šumu, ve výsledku pak

voltážně kvantifikuje tuto TWA (graf 4).

Interpretace výsledku
spektrální analýzy TWA
Jako pozitivní TWA je definovaná TWA, která

setrvale trvá ≥ 1 minutu s voltážním kritériem

o velikosti V ≥ 1,9 μV a tzv. k-score > 3,0, což

je poměr TWA k srdečnímu rytmu. Vše je

podmíněno srdeční frekvencí < 110/min. Po-

zitivní TWA je podmíněna také přítomností

< 10 % nehodnotitelných komplexů a hodno-

tou spektrálního šumu < 2 μV. Jako negativní

je hodnocena TWA v případě nepřítomnosti

pozitivní TWA po celou dobu od dosažené

frekvence > 105/min. Všechny ostatní vý-

sledky jsou hodnoceny jako neurčité. Jako ne-

určitá TWA by měla být označena i alternace

pocházející z ektopických stahů. Neurčitá

TWA se vyskytuje v 9–47 % [67].

Měření TWA analýzou posloupnosti
TWA v čase (Time domain)
Časová analýza (time domain analysis) TWA

zahrnuje odečítání de facto sudých vln T od

lichých vln T ve většině komerčně vyrábě-

ných přístrojích. Tento typ analýzy je schopen

měření i v kratším čase, než je tomu u spek-

trální analýzy (t ≥ 15 sekund), a uskutečňuje

se při ambulantní monitoraci. Doposud však

chybí přesná diagnostická kritéria a není ani

jasná senzitivita tohoto vyšetření, neboť při

srovnání těchto 2 metod hodnocení byla při

časové analýze velikost TWA větší než při

spektrální analýze [46]. K porovnání predik-

tivní přesnosti TWA bude třeba prospektiv-

ních srovnávacích studií těchto 2 metod.

Postavení TWA v klinické
stratifikaci rizika NSS
Nejlépe je stanoveno postavení TWA ve stra-

tifikaci NSS u vysoce rizikových pacientů

s ischemickou chorobou srdeční s nízkou EF

LK nebo se SS. TWA má v tomto případě pře-

devším vynikající negativní prediktivní hod-

notu [6,7,56]. TWA u nemocných s neische-

mickou kardiomyopatií (KMP) nebo s mírněji

redukovanou EF LK (EF ≥ 40 %) nemá posta-

vení v klinické stratifikaci jasné. Podobně

není jasné postavení u nemocných s fibrilací

síní či jiným nepravidelným rytmem. Není

k dispozici mnoho studií, které by srovnávaly

různé neinvazivní parametry zkoumané ve

vztahu k predikci NSS či vzniku maligní aryt-

mie. Větší počet studií se zabýval pouze srovná-

ním TWA s pozdními potenciály, které odrá-

žejí zpomalené vedení jizevnatou tkání myo-

kardu a mohou predikovat arytmické příhody,

takže by se dalo předpokládat, že by mohly

doplňovat ukazatel repolarizace společně

s TWA. Ukázalo se, že pozdní potenciály

u nemocných po IM měly vyšší pozitivní pre-

diktivní hodnotu arytmických událostí než

TWA, zatímco TWA měla vyšší negativní

prediktivní hodnotu a senzitivitu [68]. U ne-

sourodé populace nemocných, nebo u nemoc-

ných s neischemickou kardiomyopatií, může

být poměr těchto metod různý [43,58,69,70].

Ve srovnání s dalšími metodami sledujícími

srdeční stabilitu a predikujícími NSS či ma-

ligní arytmii se ukazuje, že prediktivní hod-

nota NSS je u TWA vyšší než u prodlouženého

trvání komplexu QRS [71], abnormální senzi-

tivity baroreflexu [43,71], variability srdečního

rytmu [70] nebo přítomnosti nesetrvalé ko-

morové tachykardie (NSKT) [43,70]. V případě

negativní predikce při srovnání jednotlivých

vyšetřovacích metod není shody [72,73] a bude

třeba ještě řady studií k určení optimální kom-

binace metod sloužících ke stratifikaci rizika

pro rozdílné populace nemocných.

Klinický význam
TWA je slibný EKG-ukazatel rizika NSS,

která je důsledkem disperze repolarizace ve-

doucí ke komorovým arytmiím. TWA má velmi

dobrou negativní prediktivní hodnotu pro

vznik komorové arytmie u nemocných s vý-

razně sníženou EF LK, a může tak určit ne-

mocné, kteří budou nejméně profitovat z em-

piricky indikované implantace defibrilátoru.

U ostatní populace nemocných bude třeba na-

dále hledat optimální čas a podmínky pro vy-

šetření, stejně jako optimální kombinace

s dalšími markery přídatně určujícími riziko

komorové arytmie.

Hodnocení komorové depolarizace
– délka intervalu QT, variabilita
intervalu QT, disperze intervalu QT
Délka intervalu QT
Prodloužení intervalu QT a jeho heterogenita

má silnou souvislost se vznikem komorové ta-

chyarytmie a náhlé smrti, proto jak samotný

interval, tak i rozbor jeho jednotlivých úseků

(vlna T) se staly předmětem studií v hledání

rizikového faktoru pro stratifikaci rizika NSS.

O těsném spojení prodlouženého intervalu

QT se vznikem maligních komorových arytmií

vedoucích k náhlé srdeční smrti není pochyb

v případě vrozené varianty prodlouženého in-

tervalu QT. V dalších studiích se prokázalo

spojení prodlouženého intervalu QT se vzni-

kem komorových tachyarytmií i NSS u ne-

mocných s ischemií myokardu [74–76] i v ji-

ných skupinách nemocných [77,78]. Bylo sta-

noveno, že prodloužený interval QT je silným

rizikovým faktorem pro NSS a mírným rizi-

kovým faktorem pro celkovou mortalitu. Nic-

méně u vysoce rizikových nemocných s dys-

funkcí LK prodloužení intervalu QT již riziko

mortality nezvyšuje [79]. Některé studie do-

konce vztah prodlouženého intervalu QT ke

zvýšené celkové mortalitě neprokázaly

[80–82].

Variabilita intervalu QT
Na základě výsledků studií s intervalem QT

se hledaly další parametry intervalu QT, které

by měly vyšší senzitivitu i specificitu v rizi-

kové stratifikaci. Proto byly uskutečněny stu-

die, které sledovaly variabilitu intervalu QT

během delšího časového úseku. Variabilita in-

tervalu QT během dne byla prokázána jak

u nemocných s vrozeným prodloužením in-

tervalu QT, tak i u ostatních skupin nemoc-

ných [83]. Nicméně studie nepotvrdily, že by

variabilita intervalu QT měla zásadnější pří-

nos pro zvýšení specificity či senzitivity stra-

tifikačního rizika komorových tachyarytmií či

NSS [83–85].

Disperze intervalu QT
Prodloužený interval QT může představovat

souměrné prodloužené trvání akčních poten-

ciálů nebo nejednotné zotavování podráždě-

ného myokardu. Pokud je přítomna výrazně

zvýšená disperze repolarizace, prodloužení

akčních potenciálů může vést k časné následné

depolarizaci a reentry mechanizmem ke vzniku

tachykardie. Na povrchovém EKG se disperze

QT projevuje různou délkou intervalu QT

v jednotlivých svodech, což představuje re-

gionální rozdíly v zotavovacím čase myokar-

du, a to může sloužit jako další parametr

v určování stratifikačního rizika vzniku ko-

morových tachyarytmií a NSS [86,87]. Dis-

perzí intervalu QT se zabývalo v různých kli-

nických podmínkách mnoho studií. Byl zjištěn
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trend k vyšší disperzi intervalu QT u různých

srdečních onemocnění. Bohužel signifikantní

překrývání rozdílných hodnot mezi jednotli-

vými skupinami i zdravými jedinci a signifi-

kantní rozdíly mezi jednotlivými studiemi

učinily nemožné stanovení jakékoli referenční

hodnoty, která by mohla být použita ve strati-

fikaci rizika komorových tachyarytmií nebo

celkové mortality [76,88–91]. Na základě studií

s opačnými výsledky není disperze intervalu

QT vhodným parametrem v predikci NSS

[92–95].

Klinický význam
Při určení srdeční stability na základě hodno-

cení komorové depolarizace se ukazuje, že

pouze prodloužení intervalu QT má větší

praktický význam.

Elektrofyziologické vyšetření
K vyšetření srdeční stability se při elektrofyzio-

logických vyšetřeních používá programovaná

stimulace komor (PSK) nebo síní (PSS). Sou-

částí PSK i PSS je vzestupná stimulace, kde

se vynucená pravidelná stimulační frekvence

postupně zvyšuje v rozmezí 150 až

250 imp/min (nižší frekvence jsou součástí

elektrofyziologického vyšetření převodního

systému). U PSS k vyvolání FIS nebo flutteru

síní se při vzestupné stimulaci může jít až do

frekvence 350–400/min. Vlastní programovaná

stimulace spočívá v zařazení 1–3 extrastimulů

do vlastního sinusového rytmu a následně do

pravidelné vynucené stimulace po 8–10 sti-

mulovaných stazích. K vynucené pravidelné

stimulaci o 8–10 stazích se vždy používají

alespoň 2 stimulační frekvence, a to většinou

120/min a 140/min (každé pracoviště si hod-

notu těchto frekvencí může upravit). Zařazení

extrastimulu(ů) se zkracuje v jednotlivých

krocích o 10 ms, přičemž většinou se začíná

prvním extrastimulem 350 ms za posledním

pravidelným stahem (spontánním nebo stimu-

lačně vynuceným). Pokud nenastane refrakte-

rita komor či síní, při níž extrastimulus již

nemá komorovou či síňovou odezvu, ukončíme

testování extrastimulem s vazebným interva-

lem 200 ms. Při zařazení 2. a 3. extrastimulu

se 1., resp. 2. extrastimulus nastaví fixně na

hodnotu o 20 ms vyšší než hodnota zjištěné

refrakterní periody. 2. a 3. extrastimulus se

zařazuje 350 ms za 1., resp. 2. extrastimulus

a opět se po 10 ms přibližuje k předchozímu

extrastimulu až do refrakterity, nebo je tento

stupeň protokolu ukončen při vazebném inter-

valu 200 ms za předchozím extrastimulem.

Principem PSK je snaha o vyvolání komorové

tachyarytmie, která svědčí pro elektrickou ne-

stabilitu komor. Pokud se komorovou tachya-

rytmii nepodaří vyvolat z hrotu pravé komory,

PSK se opakuje při elektrodě umístěné ve vý-

tokovém traktu pravé komory. Agresivita PSK

se může zvýšit stimulací v levé komoře, stimu-

lací více míst pravé i levé komory, vyšší vynu-

cenou stimulační frekvencí, zařazením 4 extra-

stimulů nebo provedením PSK v průběhu in-

fuze s izoprenalinem. Všeobecně však platí,

že PSK, u níž jsou použity 1–3 extrastimuly

a 2 vynucené frekvence, vyvolá KT přibližně

u 90 % nemocných po IM, u nichž se KT vy-

skytla spontánně. Při vyšším počtu extrasti-

mulů se zvyšuje riziko, že dojde k vyvolání

nespecifických polymorfních KT. Podobně

použitím vazebných intervalů extrastimulů pod

200 ms se zvyšuje riziko vyvolání nespeci-

fické FIK [96]. Přestože stimulační protokoly

jsou relativně senzitivní pro zjištění vyvola-

telnosti KT, počet potřebných extrastimulů

a vazebných intervalů se u téhož nemocného

vývojem choroby v čase mění, takže také

změna v počtu extrastimulů potřebných pro

vyvolání KT není zcela spolehlivým ukazate-

lem změněné vnímavosti k vyvolání maligní

arytmie [97,98]. KT vyvolaná infuzí izopre-

nalinu, nebo rychlou stimulací při infuzi

izoprenalinu (ne časovanými extrastimuly) je

nejspíše způsobena abnormální automacií

a ne reentry mechanizmem.

Klinický význam
Indukce setrvalé komorové tachykardie (SKT)

stále slouží jako prediktivní faktor rizika vzniku

arytmické smrti u nemocných s ischemií

myokardu a levokomorovou dysfunkcí s do-

kumentovanou NSKT [99,100]. Ve studii

MUSTT byla u nemocných s ischemií myo-

kardu s EF < 40 % a asymptomatickou NSKT

vyvolatelná SKT ve 30 %. Nevyvolatelní ne-

mocní však nemají výrazně menší riziko vý-

skytu arytmické příhody [7,101]. Ve studii

MADIT II se navíc ukázalo, že u nemocných,

u nichž nebyla vyvolána SKT, došlo k vyš-

šímu počtu výbojů implantovaného ICD než

ve skupině nemocných, u nichž SKT vyvola-

telná byla [102]. Zdá se tedy, že souvislost

mezi spontánní a vyvolatelnou KT není příliš

velká. Bylo prokázáno, že komorová ektopie

je četnější u nemocných s výraznou SS proti

nemocným s pouze lehkou SS. Přitom poměr

náhlých úmrtí způsobených komorovou tachy-

arytmií k celkové mortalitě je ve skupině s vý-

raznou SS nižší než u skupiny s lehčí SS. To

předpokládá, že komorová ektopie spíše od-

ráží závažnost SS, než že by představovala

specifický predikční marker NSS či elektrické

nestability. Především u nemocných po pro-

dělaném IM vyvolání SKT při PSK predikuje

vysoké riziko výskytu maligní arytmie a NSS.

Prediktivní hodnota pozitivní PSK (s vyvola-

telnou KT) byla stanovena u řady klinických

situací – u nemocných po srdeční zástavě

[103–105], u nemocných s výrazně sníženou

funkcí LK s přítomností NSKT [7,106] a u ne-

mocných s výrazně sníženou funkcí LK po

prodělané synkopě [107]. Prediktivní hodnota

PSK je vysoká u nemocných po IM, ale není

tomu tak u nemocných s neischemickou kar-

diomyopatií. Zatímco pozitivní PSK má vyso-

kou prediktivní hodnotu rizika NSS, nega-

tivní PSK toto riziko NSS nevylučuje, zvláště

u nemocných s výrazně sníženou funkcí LK,

což potvrdila i studie MADIT II [101]. Zda by

tato strategie, založená pouze na špatné funkci
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Graf 4. Hodnocení alternace T-vlny (T-wave alternans – TWA) při zátěžové bicyklové ergometrii
metodou spektrální analýzy. Přístroje, které se používají pro vyšetření TWA, využívají nejčastěji
znázorněný algoritmus. V 1. kroku provedou zesílení vektorového záznamu 128 komplexů v řa-
dě, kde k vektorovému zobrazení využívají 3 Frankových ortogonálních svodů. Každá vlna T je
měřena ve stejném čase vztaženém ke komplexu QRS (A). Spektrum je počítačově zpracováno
za použití metody Fourierovy transformace. Protože takto vytvořené spektrum je tvořeno hod-
notami získanými amplitudou vlny T za každým komplexem QRS, výsledek je udáván v jednot-
kách cykly/srdeční stah (B). Hodnoty spektra v časovém období 0,5 cykly/srdeční stah ukazují
hladinu TWA, zatímco hodnoty spektra v časovém období 0,22 cykly/srdeční stah odrážejí vr-
chol frekvence dechové aktivity a v časovém období 0,32 cykly/srdeční stah se odráží vrchol
frekvence šlapání; upraveno dle [111].
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LK, šla rozšířit i na neischemické kardiomyo-

patie, je předmětem současných studií.

V minulosti se provádělo sériové testování

efektu antiarytmické léčby. Toto testování po-

mocí opakované PSK se ukázalo jako strate-

gie s nízkou specifickou hodnotou, proto se

dnes ve většině klinických situací již nepouží-

vá. U neischemických kardiomyopatií dává

testování nejisté výsledky a ani negativní PSK

nevylučuje u těchto nemocných riziko NSS

[17,108,109]. Nicméně toto testování má určitý

přínos u nemocných s normální funkcí levé

komory.

Závěr
Vyšetřování a hodnocení komorové repolari-

zace z povrchového EKG i invazivní elektro-

fyziologická vyšetření patří mezi důležité vy-

šetřovací metody pro stratifikaci rizika vzniku

arytmie a náhlé srdeční smrti. Arytmie mají

multifaktoriální podklad a řada těchto faktorů

se současně mění v čase a může se překrývat

s faktory, které se podílejí na progresi srdeční

slabosti. Při každém vyšetřování rizikových

faktorů, které se podílejí na elektrické nesta-

bilitě srdce, zjišťujeme velmi pravděpodobně

pouze malou část tohoto multifaktoriálního ri-

zikového procesu. To vysvětluje, proč žádný

ze známých rizikových faktorů samostatně

nebyl schopen vybrat vysokorizikovou skupi-

nu s dostatečnou senzitivitou a pozitivní pre-

diktivní hodnotou. Další vývoj praktických

přístupů při hledání specifičtějších rizikových

faktorů či jejich kombinací za různých kli-

nických situací je nezbytný pro zlepšení stra-

tifikace rizika arytmií.
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